To support the ongoing research efforts on Coronavirus SARS-CoV-2 causing COVID-19 disease, we've provided easy access to critical products needed for virus research and detection...
Ein gut funktionierendes QK-Labor garantiert die Integrität des Produktionsprozesses eines Unternehmens, von der Validierung der Rohmaterialien bis zur Überprüfung des fertigen Produkts...
Avantor ist bereits heute einer der wichtigsten Anbieter von speziellen Färbelösungen für das histologisch pathologische Labor. Wir erweitern täglich unser Produkt-Portfolio für unsere Kunden…
Mit seiner umfassenden Auswahl an Ausstattung für die Mikroskopie ist Avantor zu einem One-Stop-Shop für Kunden geworden, die sowohl spezielle als auch allgemeine Laborausrüstung benötigen.
Die neuen Avantor® J.T.Baker® Premium-Roboterspitzen in leitfähiger und nicht leitfähiger Ausführung liefern höchste Qualität und zuverlässige Leistung für Ergebnisse, denen Sie vertrauen können.
Avantor Services provides a wide range of specialized services and digital solutions to help you solve complex challenges.
We’ve built our reputation on consistent, comprehensive mastery of day-to-day operations, allowing lab, clinical, and production environments to focus their high-value resources on core scientific priorities.
As our customers’ needs have evolved, so have our capabilities. We have become experts in scientific operations, improving performance with sophisticated solutions and providing guidance on best practices.
You can select and customize services for peak efficiency, quality, and accelerated innovation.
VWR hat eine Reihe von neuen Dienstleistungen entwickelt, mit denen Sie Ihre Abläufe rationalisieren, Kosteneinsparungen erzielen und Ihr Labor effektiv führen...
Beschreibung:
The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is adenylate cyclase inhibition. Signaling promotes phospholipase C activity, leading to the release of inositol trisphosphate (IP3); this then triggers calcium ion release into the cytosol.
Beschreibung:
The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is adenylate cyclase inhibition. Signaling promotes phospholipase C activity, leading to the release of inositol trisphosphate (IP3); this then triggers calcium ion release into the cytosol.
Beschreibung:
The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is adenylate cyclase inhibition. Signaling promotes phospholipase C activity, leading to the release of inositol trisphosphate (IP3); this then triggers calcium ion release into the cytosol.
Beschreibung:
KCNE1L belongs to the potassium channel KCNE family which represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume.
Beschreibung:
Dipeptidyl peptidases (DPPs) mediate regulatory activity of their substrates and have been linked to a variety of diseases including type 2 diabetes, obesity and cancer. DPPs have post-proline dipeptidyl aminopeptidase activity, cleaving Xaa-Pro dipeptides from the N-termini of proteins. DPPs can bind specific voltage-gated potassium channels and alter their expression and biophysical properties and may also influence T cells. DPP proteins include DPRP1, DPRP2, DPP3, DPP7, DPP10, DPPX and CD26. DPP10 (dipeptidyl-peptidase 10), also known as DPRP3 (dipeptidyl peptidase IV-related protein 3), DPL2 or DPPY, is a non-functional dipeptidyl peptidase which can bind to the potassium channels KV4.1 and KV4.2. It is a single-pass type II membrane protein expressed in spinal cord, adrenal glands, pancreas and brain tissues and may act as a modulator for cell surface expression and activity of KV4.1 and KV4.2.
Beschreibung:
Dipeptidyl peptidases (DPPs) mediate regulatory activity of their substrates and have been linked to a variety of diseases including type 2 diabetes, obesity and cancer. DPPs have post-proline dipeptidyl aminopeptidase activity, cleaving Xaa-Pro dipeptides from the N-termini of proteins. DPPs can bind specific voltage-gated potassium channels and alter their expression and biophysical properties and may also influence T cells. DPP proteins include DPRP1, DPRP2, DPP3, DPP7, DPP10, DPPX and CD26. DPP10 (dipeptidyl-peptidase 10), also known as DPRP3 (dipeptidyl peptidase IV-related protein 3), DPL2 or DPPY, is a non-functional dipeptidyl peptidase which can bind to the potassium channels KV4.1 and KV4.2. It is a single-pass type II membrane protein expressed in spinal cord, adrenal glands, pancreas and brain tissues and may act as a modulator for cell surface expression and activity of KV4.1 and KV4.2.
Beschreibung:
Constitutive NADPH oxidase which generates superoxide intracellularly upon formation of a complex with CYBA/p22phox. Regulates signaling cascades probably through phosphatases inhibition. May function as an oxygen sensor regulating the KCNK3/TASK-1 potassium channel and HIF1A activity. May regulate insulin signaling cascade. May play a role in apoptosis, bone resorption and lipolysaccharide-mediated activation of NFKB.
Beschreibung:
Folin & Ciocalteu's phenol reagent is most commonly used in the Lowry method for determining protein concentration. It has also been used for the quantification of total phenolics. In this method, protein is pretreated with copper(II) in a modified biuret reagent (alkaline copper solution stabilized with sodium potassium tartrate). Addition of the phenol reagent generates chromogens that give increasing absorbance between 550-750nm. Normally, absorbance at the peak (750 nm) or shoulder (660 nm) are used to quantitate protein concentrations between 1 - 100 mg/ml while absorbance at 550 nm is used to quantitate higher protein concentrations.
Beschreibung:
Forms a voltage-independent potassium channel that is activated by intracellular calcium. Activation is followed by membrane hyperpolarization which promotes calcium influx. Required for maximal calcium influx and proliferation during the reactivation of naive T-cells. The channel is blocked by clotrimazole and charybdotoxin but is insensitive to apamin.
Beschreibung:
Forms a voltage-independent potassium channel that is activated by intracellular calcium. Activation is followed by membrane hyperpolarization which promotes calcium influx. Required for maximal calcium influx and proliferation during the reactivation of naive T-cells. The channel is blocked by clotrimazole and charybdotoxin but is insensitive to apamin.
Beschreibung:
The KIR family of potassium channels possess a greater tendency to allow potassium to flow into the cell rather than out of it. Kir4.1, also known as Kir1.2, is highly expressed in brain including glial cells, astrocytes and cortical neurons. Kir4.1 is also expressed in myelin-synthesizing oligodendrocytes and is crucial to myelination in the developing nervous system. The gene encoding human Kir4.1 maps to chromosome 1. Kir4.2, also known as Kir1.3, is expressed in kidney, lung, heart, thymus and thyroid during development. The gene encoding human Kir4.2 maps to chromosome 21 in the Down syndrome chromosome region 1, and Kir4.2 may play a role in the pathogenesis of Down's syndrome. Kir 5.1 forms functional channels only by coexpression with either Kir4.1 or Kir4.2 in the kidney and pancreas. The gene encoding human Kir5.1 maps to chromosome 17.
Beschreibung:
GALR3 a 368 and 370 amino acid protein in human and rat, respectively, belongs to a family of G protein-coupled receptors that bind the neuropeptide galanin, which is distributed throughout the central and peripheral nervous system, the pituitary gland, the gastrointestinal tract and in the endocrine and exocrine pancreas. GALR3 mRNA is widely distributed, but expressed at low abundance. In human, GALR3 mRNA is highly expressed in the hypothalamus, pituitary and testis, and is expressed to a lesser extent in adrenal gland and pancreas. Rat and human GALR3 co-express with potassium channel subunits GIRK1 and GIRK4. Like GALR1, GALR3 signaling pathways lead to the inhibition of adenylate cyclase and to the activation of potassium channels, which are linked to the regulation of neurotransmitter release. Binding of galanin to galanin receptors results in increased feeding, impaired learning, enhanced opiate analgesia and decreased opiate place preference.
Beschreibung:
These irrigating buffers and salt solutions are sterile, physiological balanced solutions intended for use in the maintenance of mammalian cells, where a chemically defined, balanced salt solution provides an environment that will maintain the structural and physiological integrity of cells <i>in vitro</i>. Applications include the intermediate steps for cultivation of cells, like washing, centrifugation, suspending and counting, as well as for many analytical methods or biochemical treatments. Principally these solutions should be used to keep the cells in suspension only for minutes or a few hours maximum. These buffers and solutions are not cell culture media.
Beschreibung:
The protein encoded by this gene belongs to the family of P-type cation transport ATPases, and to the subfamily of Na+/K+-ATPases. Na+/K+ -ATPase is an integral membrane protein responsible for establishing and maintaining the electrochemical gradients of Na and K ions across the plasma membrane. These gradients are essential for osmoregulation, for sodium-coupled transport of a variety of organic and inorganic molecules, and for electrical excitability of nerve and muscle. This enzyme is composed of two subunits, a large catalytic subunit (alpha) and a smaller glycoprotein subunit (beta). The catalytic subunit of Na+/K+ -ATPase is encoded by multiple genes. This gene encodes an alpha 1 subunit. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May2009].